Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38607488

RESUMO

We aimed to examine the responses of pollution biomarkers in feral fish from Astyanax genus collected at three hydrographic regions in southern Brazil and the capacity of these tools to differentiate between various levels of contamination. To achieve this, levels of organochlorine pesticides (liver), as well as the biomarkers AChE (muscle and brain), TBARS (liver), and EROD (liver) were assessed. Collections were conducted in four municipalities (Alegrete, Caraá, Lavras, and Santa Vitória) during 1 year, encompassing winter and summer. Fish from Alegrete were the most contaminated overall, but animals sampled in Caraá, and Lavras also displayed elevated levels of current-use pesticides. Elevated levels of endosulfans, DDTs, HCHs, and current-use pesticides were accompanied by elevated levels of TBARS in the liver. Conversely, fish from Santa Vitória exhibited the highest levels of PAHs, accompanied by elevated levels of EROD in the liver and reduced levels of AChE in muscle and brain. TBARS proved to be a reliable biomarker for assessing impacts arising from pesticide accumulation, while EROD and AChE served as valuable indicators of impacts resulting from PAHs accumulation. Ultimately, the results obtained in this study demonstrate the reliable use of the proposed biomarkers for tracking biological impacts stemming from aquatic pollution using feral Astyanax as biomonitoring species.

2.
Chemosphere ; 352: 141423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340991

RESUMO

Chlorothalonil is a broad-spectrum organochlorine fungicide widely employed in agriculture to control fungal foliar diseases. This fungicide enters aquatic environments through the leaching process, leading to toxicity in non-target organisms. Organic contaminants can impact organism reproduction as they have the potential to interact with the neuroendocrine system. Although there are reports of toxic effects of chlorothalonil, information regarding its impact on reproduction is limited. The aim of the present study was to evaluate the influence of chlorothalonil on male reproductive physiology using the zebrafish (Danio rerio) as ecotoxicological model. Zebrafish were exposed for 7 days to two concentrations of chlorothalonil (0.1 and 10 µg/L) along with a control group (with DMSO - 0.001%). Gene expression of hypothalamus-pituitary-gonad axis components (gnrh2, gnrh3, lhr, fshr, star, hsd17b1, hsd17b3, and cyp19a1), as well as hepatic vitellogenin concentration were assessed. In sperm cells, reactive oxygen species (ROS) content, lipid peroxidation (LPO), mitochondrial functionality, and membrane integrity and fluidity were evaluated. Results indicate that exposure to the higher concentration of chlorothalonil led to a reduction in brain gnr2 expression. In gonads, mRNA levels of lhr, star, and hsd17b1 were decreased at both chlorothalonil concentrations tested. Similarly, hepatic vitellogenin concentration was reduced. Regarding sperm cells, a decreased ROS level was observed, without significant difference in LPO level. Additionally, a higher mitochondrial potential and lower membrane fluidity were observed in zebrafish exposed to chlorothalonil. These findings demonstrate that chlorothalonil acts as an endocrine disruptor, influencing reproductive control mechanisms, as evidenced by changes in expression of genes HPG axis, as well as hepatic vitellogenin concentration. Furthermore, our findings reveal that exposure to this contaminant may compromise the reproductive success of the species, as it affected sperm quality parameters.


Assuntos
Disruptores Endócrinos , Fungicidas Industriais , Nitrilas , Poluentes Químicos da Água , Animais , Masculino , Peixe-Zebra/metabolismo , Disruptores Endócrinos/metabolismo , Eixo Hipotalâmico-Hipofisário-Gonadal , Espécies Reativas de Oxigênio/metabolismo , Fungicidas Industriais/metabolismo , Vitelogeninas/metabolismo , Sêmen , Gônadas , Espermatozoides/metabolismo , Reprodução , Poluentes Químicos da Água/metabolismo
3.
Aquat Toxicol ; 261: 106613, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37352752

RESUMO

Copper ions (Cu) are one of the most frequent trace-contaminants found in Brazilian waters and, although considered as an essential element, in high concentrations can accumulate and induce toxicity. Biomarkers are important tools that can be used to assess these impacts, but to be considered trustworthy, they have to be previously tested in target organisms through laboratory studies under controlled conditions. However, many of these experiments are conducted using only males, as it is believed that the hormonal variation of females can bias the results, increasing data variability. Notwithstanding, few studies have actually tested this hypothesis, highlighting the importance of considering and measuring the role of sex in ecotoxicological studies. The aim this study was to evaluate the influence of sex on biomarkers classically used in environmental monitoring programs using the fish Poecilia vivipara as model. For this, females and males were exposed for 96 h to two Cu concentrations (9 and 20 µg/L) and a control group. In liver and gills, Cu accumulation, total antioxidant capacity (TAC) and lipid peroxidation (LPO) were evaluated. In addition, samples of peripheral blood were used for neutrophil to lymphocyte ratio determination, a measure of the onset of secondary stress. Results show that Cu hepatic accumulation did not differ between females and males, but higher levels of this metal were observed in exposed animals compared to control fish. Additionally, interactive effects were observed for hepatic LPO, as males showed elevated oxidative damage in comparison to females. Moreover, Cu exposure elevated hepatic LPO relative to control only in males, but this increase in oxidative damage was not accompanied by changes in liver TAC. On the other hand, differences in branchial Cu accumulation and LPO were not observed. Conversely, control females showed elevated TAC in comparison to control males, but Cu exposure eliminated this difference. Cu exposure also induced an increase in the N:L ratio, indicating the presence of a secondary stress response unrelated to sex. Ultimately, the findings of this study demonstrate that sex can influence the response of biomarkers that are typically used in ecotoxicological investigations in a multifaceted manner. As a result, using animals from a singular sex in such studies may result in consequential outcomes, potentially leading to underestimation or overestimation of results.


Assuntos
Fundulidae , Poecilia , Poluentes Químicos da Água , Animais , Masculino , Feminino , Poecilia/fisiologia , Poluentes Químicos da Água/toxicidade , Cobre/toxicidade , Cobre/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Brânquias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...